Mechanistic variety in zirconium-catalyzed bond-forming reaction of arsines.
نویسندگان
چکیده
Triamidoamine-supported zirconium complexes have been demonstrated to catalyze a range of bond-forming events utilizing arsines. Three different mechanisms have been observed in these reactions. In the first mechanism, triamidoamine-supported zirconium complexes of the general type (N3N)ZrX (N3N =N(CH2CH2NSiMe3)33-; X = monoanionic ligand) catalyzed the dehydrogenative dimerization of diphenylarsine. Mechanistic analysis revealed that As-As bond formation proceeds via sigma-bond metathesis steps similar to the previously reported dehydrocoupling of phosphines by the same catalysts. In the second mechanism, sterically encumbered primary arsines appear to be dehydrocoupled via alpha elimination of an arsinidene fragment. Dehydrocoupling of dmpAsH2 (dmp = 2,6-dimesitylphenyl) to form (dmp)As = As(dmp) by (N3N)Zr-complexes appeared to proceed via elimination of dmpAs: from the arsenido intermediate, (N3N)ZrAsH(dmp). Further support for -arsinidene elimination came from the thermal decomposition of (N3N)ZrAsHMes (9) to (MesAs)4 (10), which obeyed first-order kinetics. In the third mechanism, the observation of stoichiometric insertion reactivity of the Zr-As bond with polar substrates, PhCH2NC, PhCN, (1-napthyl)NCS, and CS2, led to the development of intermolecular hydroarsination catalysis of terminal alkynes. Here, (N3N)ZrAsPh2 (2) catalyzed the addition of diphenylarsine to phenylacetylene and 1-hexyne to give the respective vinylarsine products. Arsenido complexes 2 and 9 and tetraarsine 10 have been structurally characterized.
منابع مشابه
One-pot synthesis of 2-amino-3-cyanopyridine derivatives catalyzed by zinc zirconium phosphate in solvent-free conditions
A simple and efficient procedure for the synthesis of 2-amino-3-cyanopyridines from aldehydes, ketones, malononitrile, and ammonium acetate via one-pot reaction is reported. Zinc zirconium phosphate (ZPZn) nanoparticles were used as a convenient and efficient catalyst for this multicomponent reaction (MCR) under solvent-free conditions, and fair to excellent yields were achieved. The catalyst w...
متن کاملA Rapid and Practical Method for Deprotection of 1,1-Diacetates Catalyzed by Zirconium Sulfate Tetrahydrate-Silica Gel
A simple and efficient procedure for converting a variety of 1,1-diacetates into the corresponding aldehydes was developed. The methodology has been done with zirconium sulfate tetrahydrate-silica gel as catalyst. The temperature plays an important role in these reactions. The phenolic acetate function can selectively be deprotected into phenol.
متن کاملOne-pot synthesis of 2-amino-3-cyanopyridine derivatives catalyzed by zinc zirconium phosphate in solvent-free conditions
A simple and efficient procedure for the synthesis of 2-amino-3-cyanopyridines from aldehydes, ketones, malononitrile, and ammonium acetate via one-pot reaction is reported. Zinc zirconium phosphate (ZPZn) nanoparticles were used as a convenient and efficient catalyst for this multicomponent reaction (MCR) under solvent-free conditions, and fair to excellent yields were achieved. The catalyst w...
متن کاملRecent advances in the synthetic and mechanistic aspects of the ruthenium-catalyzed carbon-heteroatom bond forming reactions of alkenes and alkynes.
The group's recent advances in catalytic carbon-to-heteroatom bond forming reactions of alkenes and alkynes are described. For the C-O bond formation reaction, a well-defined bifunctional ruthenium-amido catalyst has been successfully employed for the conjugate addition of alcohols to acrylic compounds. The ruthenium-hydride complex (PCy(3))(2)(CO)RuHCl was found to be a highly effective cataly...
متن کاملBaker’s yeast catalyzed Henry reaction: Biocatalytic C-C bond formation
The C-C bond formation is an important reaction in organic synthesis to obtain value-added intermediates. Therefore, in this paper an attempt has been made to accelerate the Henry reaction (C-C bond formation) between aryl aldehydes and nitromethane using less expensive whole cell biocatalyst, baker’s yeast (BY). The scope of the methodology was also tested for the heteryl aldehyde i.e. 2-chlor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Dalton transactions
دوره 33 شماره
صفحات -
تاریخ انتشار 2008